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Abstract We address systematics for the enumeration of substitutional isomers
when there is constrained positioning of ligands on a molecular skeleton. One con-
straint involves ‘restrictive ligands’ where two of the same kind are forbidden to occupy
adjacent sites in a molecular skeleton. This may arise because of steric hindrance, or
because of groups which in neighbor proximity react to eliminate one. For instance,
no pair of –OH groups attach to the same C atom in a molecular skeleton. In another
case, malonic acid residues decarboxylate leaving no more than one decarboxylation
in each residue. The enumeration with such restrictive ligands may be addressed via
a Polya-theoretic cycle index hybridized with the graph-theoretic independence poly-
nomial (when there is just a single such neighbor-excluding ligand and another which
is not), while more generally a hybridization with the chromatic polynomial is needed.
Another substitional-isomer constraint involves bidentate ligands, with each ligand-
part occupying adjacent sites, and possibly also with additional separate unidentate
ligands. Here, the set of all pure & mixed such ligand placements is analytically repre-
sented by a ‘symmetry-reduced’ matching polynomial (which is a hybrid now of the
matching polynomial and Polya’s cycle index). This result gives the generating func-
tion for isomer enumeration, taking into account every possible so-restricted assort-
ment of the employed ligands. Here we make such novel hybridizations (for these
and other graphtheoretic polynomials) to deal with such oft-encountered chemical
problems, which nevertheless transcend typical earlier unconstrained formulizations.
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Further subsymmetry classification & enumerations, along with examples are consid-
ered in a further article.

Keywords Enumeration · Substitutional isomers · Constrained substitution ·
Symmetry-reduced counting polynomials

1 Introduction

We start with a general introduction to the subject and try to adequately detail basic
ideas with a modest selection of references. Our exposition is not sought to be a com-
prehensive historical (or systematic) survey. A number of selected practical examples
in the text illustrate the tasks involved.

Practically all molecules in nature are substitutional isomers of other molecules.
This often means that some of them share one and the same core, or skeleton, and
differ only in their individual sets of substituents, or ligands, attached to this skeleton.
A diversity of instances can be recalled: substituted benzenes, say, having a benzene
ring as a common core; octahedral coordination complexes (as of CO2+) with a fixed
central metal ion and a fixed octahedral coordination sphere; bulk crystals built from
different atoms but sharing one and the same crystal lattice, in the sense of having
isomorphic unit cells; and linear chain molecules of DNA, responsible for all forms of
life on Planet Earth; etc. The set S of skeletal sites are locations for the substitution of a
finite collection L of types of ligands. Of the different possible patterns of distributing
ligands at the various skeletal sites, some patterns will describe the same chemical
compound, such as have certain identical properties. Generally different so equivalent
patterns are transformable into one another through some permutation of the ligands
and/or skeletal sites. Typically, then the equivalent patterns are those transformable
into one another through some permutation group A, and the problem at hand is to
enumerate (and characterize) the A-equivalence classes of the patterns.

To this point, we have skeletal and ligand sites and an associated permutation
group—and this is the basics of what is involved in Pólya’s enumeration theory
[1–3]—as well as in Cauchy-Frobenius’ [2,3], Redfield’s (see [4]), Ruch et al.’s [5],
and related foundational works [1–4,6–11]. In addition to the permutation group,
graphs are frequently involved in the enumerations, perhaps, with the graph simply
providing the skeletal sites as its vertex set and the relevant skeletal permutation group
as the graph’s automorphism group. See, e.g., [7] or [2,3]. Here, we utilize the graph
even further, to invoke a relevant distance function on the sites (and possibly ligands) to
modify the simple enumeration problems in a chemically relevant way. But the primacy
of these fundamental aspects might be a little further elaborated. With both the skele-
ton and the ligands represented by graphs, each with their own automorphism group,
which in general may involve direct products for each component, and a full automor-
phism group possibly further involving whole-set-moving permutations which move
equivalent sets around themselves. The molecular structures correspond to mappings
between skeletal and ligand sets, with constraints then to be implemented by making
demands on what happens to the graph edges under such mappings. Disjoint skeletal
components under such mappings can become linked through association with a single
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multidentate ligand. All this would enable one to deal with coordination complexes
which were forefront inorganic research during the first half of the twentieth century.
But more generally, the distinction between skeletal and ligand set becomes ambigu-
ous, e.g., with organometallics, which later became the forefront inorganic research.
In fact, Pólya used his theory to deal efficiently with the alkanes, where the distinc-
tion between skeleton and ligand had the skeleton-ligand nomenclature “submerged”
there. In the context of Pólya’s framework for our present applications, skeleton and
ligand sets are retained, though following Pólya, the ligand set is collapsed into equiv-
alence classes of like ligands, such equivalence classes, then, for a unidentate case
being referred to as colors, with which the different skeletal sites, then, are to be col-
ored. For a bidentate case, one then has a bicolor to be associated to a pair of (likely
adjacency restricted) sites. Thence, we here wish to extend this form of Pólya’s the-
ory to retain some information about (molecular) graphical structure underlying the
otherwise independent coloring of the different available vertices of the skeletal set.

We associate to any common skeleton S of a family of substitutional isomers a
molecular graph M(X; E) whose set X of vertices (points) correspond to atoms and
set E of edges (lines) to neighbor pairs of atoms (|X | = n; |E | = m); see [7]. To us,
of paramount importance are symmetry groups AutM ∼= A of automorphisms of M,
with members of A represented as permutations acting on the set X of vertices corre-
sponding to the skeleton’s sites. Our formalization allows us to consider q-colorings
(q ≥ 1) of vertices of M, in a lieu of really speaking of q sorts of univalent substit-
uents. Thus, we turn to a study of purely combinatorial actions of groups A (AutM)

on their support sets X . Mathematics can address such problems in an abstract and
universal way, as we discuss.

However, before the details of our treatment, we first briefly sketch some back-
ground. Here, one of the best books for a reference with a few chapters devoted to
enumeration of chemical objects (substitutional isomers etc.) is [7]. Its editor Prof.
Alexandru Balaban is himself a famous contributor, who has published over a period
of years a large number of related texts which are widely cited in chemistry. But there
are numerous other reviews or books focusing on chemical chemical applications
[1,8–11].

A simple task is to count up the number of unrestricted substitutional isomers hav-
ing a skeleton S with a set of sites X (serving also as the vertex set for its graph
M), and an automorphism group A = AutM, while the number of sorts of ligands
is q ≥ 1. This problem can be solved using the Cauchy-Frobenius lemma (some-
times referred to as Burnside’s lemma) and more completely using Pólya’s cycle
index and associated counting theorem. Aside from [7], purely mathematical literature
exists, including: two versions [2,3] of a book by the famous German mathematician
Adalbert Kerber; a special book on graph enumerations [4] by celebrated graph theo-
rists Harary and Palmer; and the original classic articles by Pólya [1], De Bruijn [6],
Rota and Smith [14]. The mentioned mathematical tools have been expounded and
applied also in dozens of more general combinatorics texts and hundreds of papers.
The mentioned methodology is most familiar but not unique, and different powerful
methods have also appeared over the last 30–40 years, especially ones using double
cosets [5] or Burnside’s table of marks [2,3].
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A second task is to enumerate stereo isomers. The same general tools [1–7,12,
13,15–17] are used, working with appropriately selected subgroups of A = AutM.
Often, the choice for the diastereomers is the same as for the simple substitutional
isomers (at least when the skeleton is rigid). The difference between the number of
stereomers and the number of diastereomers is the number of enantiomeric pairs.

A third task refines the enumeration to that of isomers with each possible subgroup
of symmetry. Here, methods described in [2,3,5,10,11] are applicable. The final clas-
sification of substitutional isomers with respect to their own symmetry groups is per-
formed using the general inclusion-exclusion procedure involving the combinatorial
Möbius function [2,3,11], perhaps by way of Burnside’s “marks” [9,10]. This entails
groups corresponding to each subgroup H ⊆ A in the lattice of subgroups of A. Note,
however, that the phrase “each subgroup H” admits, in this case, a more economic
algorithm using just certain subgroups, termed “closed”, as explicated in [14–17], and
later, herein.

Although combinatorics can itself study countable objects without taking into
account their physicochemical nature, the chemist should exercise special care of
setting combinatorial mathematical character correctly, taking into account relevant
physicochemical conditions of each specific problem. Without the last, what is abso-
lutely true from the mathematical point of view may sometimes render an answer to
a secondary question. A modest historical instance was the enumeration of ‘chemical
trees’, which interested Cayley, Pólya (see [1]), and other mathematicians (see [2–
4,7]), now for over a century. It was seen that molecules of alkanes can be depicted by
their hydrogen-depleted molecular graphs (namely, trees) having only vertex degrees
1, 2, 3, and 4, whence a correct formal enumeration of all chemical trees was suc-
cessfully formulated. But not all these graphs can be realized in nature as molecules
of alkanes, since “steric hindrance” must eventually enforce a taboo upon molecules
where different atoms might otherwise theoretically share the same coordinates. In
order to bypass this obstacle, nature might only produce much strained molecules with
distorted angles between bonds and a severe steric repulsion, so strong as to think that
such molecules might not actually be realizable. A new problem thereby arose: How
to enumerate molecules of alkanes which do exist? But this question still remains
without a complete answer. The overall solution will be possible only after imposing
proper constraints on the count, say, by restricting trees to those embeddable on the
diamond network, as in [18]. However, we do not here try to solve this problem. Yet
another sort of complication entails situations where the relevant symmetry group acts
both on site & ligand labels, say in correlated fashion [19–21].

For any real skeleton, there can always be found ligands that are ‘too large’ to simul-
taneously occupy adjacent sites. Moreover, this situation may be aggravated by the
presence of groups with a strong electrostatic repulsion, or else with mutual reactivity
and elimination of the product. As a result, any sort of congestion that forbids the exis-
tence of such substitutional isomers makes unrealistic the unrestricted enumeration of
general-type colorings of vertices in associated molecular graphs. One may seek to
count the restricted colorings of graphs where no two vertices of a selected color are
adjacent [12]. One may also increase an allowed minimum distance between a pair of
vertices and consider instead a criterion of the exclusion of next-nearest sites to allow
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only third-nearest ones et seq. such as considered [22,23] whence all colors are so
constrained. Such tasks can be addressed using our approach.

Yet further, structural restrictions on substitutional isomers arise. Say, looking for all
patterns where attached ligands of a certain type are excluded from certain fixed sites, as
might occur because of the presence of certain geometric or topological substructures.
An example entailing the introduction of similar refinements upon the usual count of
isomers is found in a recent paper [24] by Vukičević and Graovac, who studied optimal
configurations of substituents in functionalized fullerenes C60Xn for n = 2, 4, 6, 8.
Another article [13] studies decarboxylation isomers with restricted positions for de-
carboxylations in malonic-acid residues attached to a fullerene molecule C60, where
restrictions allow no more than one decarboxylation in each malonic-acid residue. A
practically important type of constraint emerges also in case of substitutional isomers
containing bidentate ligands, where the two parts (“teeth”) of the bidentate ligand
often must occupy neighboring sites. Such constraints make attractive novel problems
for mathematicians and mathematical chemists.

At this juncture, we turn to a more rigorous exposition, which will, however,
be performed in a reader-friendly way, “with a peaceful human voice amidst wild
jungles”.

2 Preliminaries

This section will be devoted to an exposition of rather rigorous mathematical notions
and tools [1–52]. Some other relevant aspects accompanying the topic might also be
included in a more extensive discussion, but this is not done herein, where greater
focus is sought.

2.1 Setting of the problem using the F-polynomials of graphs

Inasmuch as we use molecular graphs to represent substitutional isomers, this encodes
combinatorial graph-theoretic information about their chemical composition (and,
possibly, their symmetry and some aspects of their geometry, and/or topology). We
seek a census of all significant molecular substructures, which may bear weights
for evaluating their individual contribution to the total molecular structure. In graph-
theoretical terms, our task is stated as the enumeration of equivalence classes of cer-
tain vertex covers of a graph with components drawn from a given collection of its
(weighted) subgraphs. The components in these covers, in general, include isolated
vertices or edges, or cycles, etc., and yet further take into account restrictions imposed
thereon (say, allowed distances between pairs of ligands (or colors), symmetry of a
resulting pattern, and whatever else).

Thus, we want first to consider here, a special sort of generating function whose coef-
ficients enumerate symmetry equivalence classes of such vertex covers with respective
allowed compositions of subgraphs. We propose the addition of such generating func-
tions to the class of graph polynomials in graph theory.

In 1979, the famous mathematician of Trinidad Edward J. Farrell introduced [25]
the so-called “family polynomials”, or just “F-polynomials” such as encompass many
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familiar graph polynomials, including the cycle (circuit), characteristic, matching, per-
manental, tree, star, path, and clique polynomials. This family is defined in terms of a
graph G and a family F of connected and isomorphically distinct graphs. An F-cover
of G is a spanning subgraph of G, in which every component is isomorphic to a mem-
ber of F . Let us associate with each member f of F an indeterminate, or weight, wf,
which conventionally then is also the weight of isomorphic copies in G. The weight
of a cover C, denoted by w(C), is the product of the weights of all its components.
Then, the F-polynomial is

F(G; w) :=
∑

w(C), (1)

where the summation is taken over all the F-covers of G, and where w is a vector of
the indeterminates wf of f ∈ F .

Note here that the R. H. S. of (1) allows a more general interpretation of the F-
polynomial where the w(C) are more general than just

∏
wf. Indeed, though not done

in [25], this agrees Farrell’s opinion (as was stated via correspondence). Generally, (1)
may be contemplated for any set of weights that one may attach to the covers C, in it,
and even without any relation to the weights wf. Later, we utilize such a possibility for
our goals. Another possibility is to allow the wf to be from a more general algebra—
say, as operators for a “wave operator” to form “cluster expanded” wave-functions,
e.g., [26].

Still, as well as in the original examples [25], we shall use throughout this paper a
family F of subgraphs f with weights wf uniquely specified by the number of vertices
in f. In particular, this can be applied to every path, star, clique or cycle. Herein, we
shall confine ourselves by considering just the cycle case, with the convention that a
one-vertex cycle with the weight w1 is a self-loop or simply an isolated vertex, and
a two-vertex cycle with the weight w2 is an edge (res. a pair of opposite arcs). Then,
there follow a triangle, quadrangle, and longer i-cycles with the weights w3, w4, and
wi (i ≥ 5), consecutively.

As a case in point, choose first Farrell’s cycle (circuit) polynomial Cyc(K4; w) of
the complete graph K4 (the graph of the tetrahedron), viz.:

Cyc(K4; w) = w4
1 + 6w2

1w2 + 4w1w3 + 3w2
2 + 3w4, (2)

where the five coefficients on the R. H. S. play the following roles: the first, 1 of w4
1

indicates that there is just 1 spanning K4 subgraph composed from 4 isolated vertices;
the second, 6 of w2

1w2 says that there are exactly 6 spanning subgraphs containing two
isolated vertices & one edge; the third, 4 of w1w3 stands for 4 spanning subgraphs
composed from one isolated vertex and one triangle; the fourth, 3 of w2

2 is for the 3
spanning subgraphs consisting of two disjoint edges; and fifth, 3 of w4 conveys the
occurence of 3 quadrangles, in K4.

One of the principle goals of Farrell’s work, presented by more than a hundred of
his (and coauthors’) papers (see his site on the Internet), is to study all possible inter-
relations among different sorts and types of graph polynomials—chiefly based on the
F-polynomials. In particular, it was demonstrated that his form of the cycle (circuit)
polynomial, whose instance is (2), allows with different substitutions for its variables
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w1, w2, . . . , wn to obtain the characteristic, permanental, and matching polynomials
[25,27–33]. But also this yields many other relevant polynomials, such as the Paul-
ing-Wheland overlap function [34,35], with wodd = 0, w2 = 2, and w2n = 4, n ≥ 2.
Since we need to consider further the properties of the matching polynomial M(G; w),
we note a case in point, using the substitution of 0 : wi = 0 for i ≥ 3 on the R. H. S.
of (2), to derive

M(K4; w) = w4
1 + 6w2

1w2 + 3w2
2 . (3)

This is given in the same n-variable form of its R. H. S. that was originally introduced
by Farrell [25,29] for the F-polynomials, and is also the same as the (even earlier) sta-
tistical mechanical form with w1 and w2 identified as monomer and dimer Boltzmann
factors, or activities—e.g., [36]. Aside from defining this matching polynomial as a
suitable special case of the cycle polynomial, it can directly be concisely defined as
the F-polynomial with F = {K1, K2}. Here, it should be noted that there is another
common form M(G; x) of the matching polynomial in one variable x , as defined by
the well-known Yugoslav (Serbian) mathematician and chemist Ivan Gutman [30]. In
order to obtain the latter, we substitute w1 = x and w2 = 1 in (3), which results in a
signless one-variable form of Gutman’s polynomial

M(G; x) = x4 + 6x2 + 3, (4)

which is an equivalent form which can be converted into (3). Such manipulations
should enhance our further discussion, when we make some mutual comparisons of
the cycle (circuit) polynomial with Pólya’s cycle indicator. Now, each individual term
in (2) looks like a product

∏n
i=1 w

σi
i , where σi is the number of cycles of length i in

a respective C-cover of our graph G. Taking this into account, one can formulate the
following elementary but important rule:

Rule 1 For each individual term
∏n

i=1 w
σi
i of the cycle (circuit) polynomial

Cyc(G; w) of a graph G on n vertices,
∑n

i iσi = n (see [25,27–29]).

Just this relation can be used for the reverse passage from the R. H. S. of (4) to
the R. H. S. of (3), which obviously involves here only w1- and/or w2-containing
terms out of the entire set of indeterminates {w1, w2, . . . , wn} which may occur in
general. Alternatively, in our example, we can employ an individual definition of the
matching polynomial with a special notation for the coefficients as is particularly used
by Gutman [30]. Namely, the matching polynomial of a simple graph G (undirected,
unweighted, without self-loops and multiple edges) is taken as

M(G; w) = wn
1 + μ(G; 1)wn−2

1 w2 + · · · + μ(G; h)wh
2 =

h∑

k=0

μ(G; k)wn−2k
1 wk

2

(μ(G; 0) := 1), (5)

where μ(G; k) is the number of k-matchings of a graph G, alternatively expressed
as the number placements of k nonincident edges in G (with no vertex in common);
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and h is the maximum possible number of such placements (in general, h ≤ �n/2�,
so that, often, �n/2� is used instead of h in (5), which admits that μ(G; �n/2�) may,
sometimes, = 0; but h is used to identify the last nonzero coefficient μ(G; h) in (5)).

The coefficients μ(G; k)(1 ≤ k ≤ h) are relevant to the problem of enumera-
tions of placements of k bidentate ligands in a common skeleton S of any admissible
substitutional isomers (so long as the connection between the 2 attaching pieces of
the bidentate ligand are sufficiently short, as is common). Since our task is to take
into account, along with bidentate ligands, unidentate ones also, we want to make
yet one refinement of the matching polynomial (say, of the version (5)) using extra
auxiliary variables. To this end, we introduce here, besides w, an additional vec-
tor x = (x1, x2, . . . , xn) of individual isolated-vertex (res. self-loop) indeterminates
where each component xi is specially associated to the i th vertex of a graph G; it
may be considered instead of a common vertex (self-loop) variable w1 and be also
used in a special operational calculus involving partial derivatives of the polynomial
M(G; x; w) with respect to these variables [31–33,37–39] (as below). For instance,
we consider the polynomial M(K4; x, w), which is a more detailed version of the one
in (3), viz.:

M(K4; x, w) = x1x2x3x4 + x1x2w2 + x1x3w2 + x1x4w2

+ x2x3w2 + x2x4w2 + x3x4w2 + 3w2
2, (6)

where individual vertex indeterminates xi (1 ≤ i ≤ 4) are associated with the i th
vertex of G, in place of a previous common one w1.

By way of illustration, we want also to show an instance of differential operations
with M(G; x; w); some other cases involving partial derivatives will specially be
considered later. First, recall that an induced subgraph G∗ of a graph G is obtained
by deleting a subset of vertices from the latter together with all edges that are incident
to them. Let V (G∗) be the vertex set of an induced subgraph G∗ ⊂ G(|V (G∗)| =
n − p < n), then (see [31–33])

∂ p

∂xi1∂xi2 · · · ∂xi p

M(G; x, w) = M(G∗; x, w) (is ∈ V (G) \ V (G∗); 1 ≤ s ≤ p),

(7)

where it is understood that p = 0 gives the identity in case G∗ = G. Similarly, more
specialized variables xi can be introduced in the original cycle (circuit) polynomial
Cyc(G; w) and any other F-polynomial F(G; w); but in all such cases, the partial
derivatives play the same role as in (7). Also, note that left multiplication by an arbi-
trary constant (weight) w on both sides of (7) conserves the equality. But the main
differential manipulations arise in a later subsection. Right now, we continue listing
polynomials of potential chemical interest.

From among different graph polynomials which can be used for solving combina-
torial problems of chemistry but not explicitly so far related to the F-polynomials, we
note two pertinent ones. But first, we need to recollect certain notions. In particular,
a stable (or independent) set (in G) is a set of pairwise nonadjacent vertices of G.
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Fig. 1 G2 is the line graph
of G1

A stable set of the maximum size is referred to as a maximum stable set of G, and the
stability, or independence, number α(G) is the maximum cardinality of a stable set in
G. Let sk be the number of stable sets of cardinality k in G.

The polynomial

I (G; x) =
α∑

k=0

sk xk = s0 + s1x + s2x2 + · · · + sαxα (s0 := 1;α = α(G)) (8)

is called the independence polynomial of G (Gutman and Harary [40]), or the inde-
pendent set polynomial of G (Hoede and Li [41]). The independence polynomial was
defined as a generalization of the matching generating polynomial M(G; x) of a graph
G [40], which was another version of the matching polynomial, viz.:

M(G; x) = xn M

(
G; 1

x

)
=

h∑

k=0

μ(G; k)xk . (9)

The main reason for utilizing this relation between the two polynomials was the fact
that the matching generating polynomial of a graph G and the independence poly-
nomial of its line graph L(G) are identical. Recall that given a graph G, its line
graph L(G) is the graph whose vertex set is the edge set of G, and two vertices (of
L(G)) are adjacent iff (if and only if) they share an end point in G. For instance, the
graphs G1 and G2 depicted in Fig. 1 satisfy G2 = L(G1) and, hence, I (G2; x) =
1 + 6x + 7x2 + x3 = M(G1; x), where M(G1; x) is the matching generating poly-
nomial of the graph G1. In a wider context, to any simple graph G with a family
F of connected subgraphs (see the definition of the F-polynomial above), one can
associate a derivative graph G F having the set F(G) of subgraphs isomorphic to the
f ∈ F , as its vertex set wherein two vertices (subgraphs) f1, f2 ∈ F(G) are adjacent
iff f1 ∩ f2 �= ∅. Then, in general, we can write down for a generalized independence
polynomial I (G F ; x) of G F :

I (G F ; x) = F(G; 1, 1, . . . , 1; 1, x, . . . , x), (10)

where F(G; · · · ) is the indicated value of the F-polynomial, of a graph G, associ-
ated with a family F ; and the substitution of x for variables wi begins only upon the
exhaustion of “simpler” subgraphs in F . This equality (10) indicates a kinship of the
independence polynomials to F-polynomials, and concomitantly poses the following
question: How should one characterize graphs which are the derivative graphs G F for
given (res. some) families F of connected graphs? The characterization of line graphs
(i.e., when F is a family of all edges of G) was proven by Beineke [42,43]. He showed
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that there are nine minimal graphs which are not line graphs, such that any graph that
is not a line graph has one of these nine graphs as an induced subgraph. That is, a
graph is a line graph if and only if no subset of its vertices induces one of these nine
graphs. The independence polynomial is also applied to solving different problems
of (mathematical) chemistry [44], statistical mechanics [45,46], and, potentially, of
many other fields.

In mathematics, a strict, or proper, coloring of vertices of a graph G using q colors
is one where no two vertices of the same color are adjacent. (See the further devel-
opment of this notion [27,28] by Italian mathematician Mario Gionfriddo, a known
expert in generalized colorings, who considers also nonadjacent vertices at fixed dis-
tances.) There is a minimum number χ of colors that can be used to obtain such strict
colorings, and is called the chromatic number. For all bipartite graphs (e.g., of alternant
hydrocarbons) χ = 2; so that these are also called bichromatic graphs. It is apparent
that a necessary (and sufficient) condition for the existence of a proper coloring of a
graph G is q ≥ χ(G). The greater q, the greater is the number of possible n-colorings.
The polynomial Chr(G; x) whose coefficients (in xn) count strict colorings is called
the chromatic polynomial, introduced in 1912 by the great mathematician George
Birkhoff [47] and is, by now, so widely used in graph theory and its applications are so
numerous that it might demand a special book to narrate this. Accordingly, Chr(G; q)

is equal to the number of strict colorings of a graph G using exactly q ≥ 1 colors;
in particular, Chr(G; q) = 0 when q < χ and Chr(G; q) > 0 when q ≥ χ . As
was already mentioned above, the colors can symbolize different sorts of ligands that
should be substituted to a skeleton, so as to avoid the adjacency of two ligands of the
same sort. Say, anions and cations in a crystal lattice avoid a close neighborhood of
particles possessing like charges. Moreover, notice also that the roots of the chromatic
polynomial can also bear some constructional information about a (molecular) graph,
say, such as the indication of existence or nonexistence of Hamiltonian paths in it [48].

2.2 A modified Pólya’s cycle indicator

Without exaggeration, one may say that the works of Redfield (see Redfield [4]) and
Pólya [1] founded the basis modern theory of symmetry-mediated enumeration of
objects by the automorphism group (see [2–4,10]). The main mathematical tool that
had been known earlier was the Cauchy-Frobenius lemma (often called “Burnside’s
lemma”). Pólya utilized this fundamental result for the derivation of his celebrated
counting theorem and introduced into mathematical practice a special generating func-
tion now called Pólya’s cycle index (or cycle indicator) [1]. Although there appeared
different powerful methods, say, employing double cosets [5] and Burnside’s table
of marks (see [2,3]), Pólya’s cycle index [1] and its refinements have continued to
develop (see [2–4,6,7,10,11] and the two books with translations of [1], nested in the
References together with [1]).

Let A = AutX be the automorphism (or permutation) group acting on a nonempty
finite set X of objects, as above. As was shown by Pólya [1], A-equivalence classes of
objects, or A-orbits, can be enumerated by weight, by means of the special polynomial
C(A; X; s1, s2, . . . , sn) called the cycle indicator (or index) [1–4,6,15–17]. It may be
written down as follows:
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C(A; X) = C(A; X; s1, s2, . . . , sn) = 1

|A|
∑

g∈A

∏

i | |A|
sςi (<g>)

i , (11)

where |A| is the cardinality of A; si ’s are weight-indeterminates used for convenience
of notation; ςi (〈g〉) is the number of orbits of length i induced by the cyclic group 〈g〉
generated by an element g ∈ A; the sum runs over all elements of A and the product
is taken over all divisors i of |A|. Note that here we change the standard notation
ςi (g) to a new, equivalent, notation ςi (〈g〉) not in vain but because we shall con-
travene the old tradition to utilize for enumeration purposes just cyclic (1-generator)
subgroups and further allow subgroups 〈gĤ〉 generated by the complete coset gĤ
of the normalizer NA(Ĥ) of Ĥ in A (see [15–17]). Besides, here, we employed not
in vain a varsigma version “ς” of the character “σ”, previously used in formulation
of the Rule 1 for literal terms of the F-polynomials. We choose such a connota-
tion, because all literal terms of cycle indicators also obey our earlier Rule 1. As was
already briefly mentioned above, just this similarity in the properties of literal terms
of the F-polynomials of graphs and cycle indices makes it possible to extend the
general combinatorial results of [15–17] to the case of the generating functions under
consideration.

Let K = {c1, c2, . . . , c|K |} be a set of weight-indeterminates standing for |K |
distinct colors, or simply ‘a set of colors’. The following statement is a version of
Pólya’s counting theorem [1–4,6,15–17], viz.:

Theorem 1 The number of A-equivalence classes of K -colorings of X with a given
assortment of K -colors equals the corresponding coefficient of the polynomial

C(A; X; c1, c2, . . . , cn) = C(A; X; s1, s2, . . . , sn)

∣∣∣si =∑|K |
t=1 ci

t (i | |A|) . (12)

A subgroup H ⊆ A was called closed and periodic by Rota and Smith [14], or
automorphic synonymously by us [15–17], iff H is the maximum among all sub-
groups inducing one and the same set of orbits (Ĥ\\X). The closed nature of such a
subgroup H will be indicated by a “hat” (̂ ) over the subgroup name, thusly Ĥ . Such
an Ĥ contains all the coorbital subgroups and Ĥ is also termed the closure of all its
coorbital subgroups H .

For each subgroup H ⊆ A and an element g ∈ A, the transformation H g =
gHg−1 = H ′ is termed an inner automorphism of H if g ∈ H , and an outer auto-
morphism of H if H ′ = H while classes are not preserved. Subgroups H and H ′
actually are distinct but are conjugate subgroups in A. Note that if an element g /∈ H
commutes with H as a whole (gH = Hg), then H ′ = H , i.e., the result H g might
still be (equivalent to) an inner automorphism (if classes are preserved).

The notion of subgroup conjugacy permits an important economy in practical com-
binatorial applications of (symmetry) groups, because every pair of conjugated sub-
groups always produces essentially the same combinatorial action. In particular, this
means that each substitutional isomer is represented by the whole collection of con-
jugate g ∈ G for if one conformation c of a substitutional isomer manifests H as a
symmetry group, then transforming c by g ∈ G yields a new conformation of the
same isomer now with the symmetry group H g . Note that this is universally true for
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every pair of conjugated subgroups, whether these are closed or not (i.e., for any pair
H and H g; H, H g ⊆ A).

At this stage of our exposition, we are prepared to turn to the solution of some
actual tasks of practical use to chemistry, and other fields.

3 Illustrative application: Poly-t-butyl derivatives of B12H2−
12

The dodecahydroborane dianion B12H2−
12 is an example of a molecular entity having

the point symmetry group Ih of cardinality (|Ih | = 120). The general interest in diverse
hydroborane compounds, we consider the poly-t-butyl derivatives of this interesting
dianion.

The graph G of the icosahedron, with 12 vertices and 30 edges, plays in our example
the role of a skeleton (with sites corresponding to boron atoms) while butyl radicals
are the ligands (substituted for hydrogen atoms in the pristine dodecaborane anion).
We adopt the numeration of vertices of the icosahedron graph given in Fig. 1 of [53].
Accordingly, we have the following list of edges ek = (i, j)(1 ≤ k ≤ 30; 1 ≤ i <

j ≤ 12):

e1 =(1, 2), e2 =(1, 3), e3 = (1, 4), e4 = (1, 5), e5 = (1, 6), e6 = (2, 3), e7 = (2, 6),

e8 = (2, 7), e9 = (2, 11), e10 = (3, 4), e11 = (3, 7), e12 = (3, 8), e13 =
(4, 5), e14 = (4, 8), e15 = (4, 9), e16 = (5, 6), e17 = (5, 9), e18 = (5, 10), e19 =
(6, 10), e20 = (6, 11), e21 = (7, 8), e22 = (7, 11), e23 = (7, 12), e24 = (8, 9), e25 =
(8, 12), e26 = (9, 10), e27 = (9, 12), e28 = (10, 11), e29 = (10, 12), e30 = (11, 12).

Since t-butyl radicals −C(CH3)3 are sufficiently bulky when substituted at adja-
cent boron atoms, the problem on placing ligands with exclusive positions is here
reduced to that of finding all nonequivalent independent sets of (pairwise nonadja-
cent) vertices in G. Thus, in particular, information about all (including symmetry
equivalent) substitutions of exclusive t-butyls to B12H2−

12 is kept by the coefficients of
the ordinary independence polynomial I (G; x). Here, the computation of I (G; x) can
be reduced to finding respective edge-disjoint copies of star subgraphs K1,5. The edge
list θi = {ki1, ki2, . . . , ki5}(1 ≤ i ≤ 12; 1 ≤ ki1 < ki2,< · · · < ki5 ≤ 30) for each
isomorphic copy of K1,5 in G as centered at vertex i (consistently with [53]) is: θ1 =
{1, 2, 3, 4, 5}, θ2 = {1, 6, 7, 8, 9}, θ3 = {2, 6, 10, 11, 12}, θ4 = {3, 10, 13, 14, 15},
θ5 = {4, 13, 16, 17, 18}, θ6 = {5, 7, 16, 19, 20}, θ7 = {8, 11, 21, 22, 23},θ8 = {12,

14, 21, 24, 25}, θ9 = {15, 17, 24, 26, 27}, θ10 = {18, 19, 26, 28, 29}, θ11 ={9, 20, 22,

28, 30}, θ12 = {23, 25, 27, 29, 30}.
An analytical expression for I (G, x) represented in a differential-operator form is:

I (G; x) =
⎧
⎨

⎩

[
12∏

i=1

(
∂

∂ξ
+ x

∂5

∂yi1∂yi2 · · · ∂yi5

)]
eξ

30∏

j=1

y j

⎫
⎬

⎭

∣∣∣∣∣∣
ξ=0;y j =1 (1≤ j≤30)

,

(13)

where ξ, x , and y j are auxiliary commutative variables; and double indices i1, i2, . . . ,

i5 correspond to the ordinal numbers of the five edges in θi , the i th isomorph of sub-
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graph K1,5 in G. Algorithmically, the calculation of I (G; x) using (13) includes the
stages of successive introduction of new variables y j now involved in the action of the
differential operator (· · ·) in the operator product and (then) of the deletion of those
variables y j which will not be involved in further operations. In a ready form, we
obtain

I (G; x) = 1 + 12x + 36x2 + 20x3, (14)

where the coefficient of xs (0 ≤ s ≤ 3) is equal to the number of independent sets of
s vertices in G (and the maximal such sets contain 3 vertices).

Since I (G; x) itself enumerates all possible independent sets, but not symmetry-
equivalent classes thereof, we need a special generalization of Pólya’s cycle index
to obtain a suitable hybrid of this and the independence polynomial of the icosahe-
dron graph G

(
of B12 H2−

12

)
. But, first, we calculate the original Pólya’s cycle indica-

tor for the permutation representation of point-symmetry group Ih acting on the set
X = V (G) of G.

The group Ih has formally 10 classes of conjugated elements but it is worth not-
ing that a pair of classes of elements of order 5 as well as a pair with elements of
order 10 are represented, on X , by permutations with equal distributions into cycles
(i.e., all elements of order 5 are here combinatorially equivalent, and all elements of
order 10 are equivalent). Nonetheless, we give all conjugated classes independently of
their mutual correlations, since in general, for other groups, such similarity in actions
often does not occur. The elements of symmetry of icosahedron are: the identity (1),
rotations about the twofold axis crossing the centers of opposite edges (15), rotations
about the threefold axis crossing the centers of opposite facets (20), rotations about
the fivefold axis crossing opposite vertices (12 by 72◦ and 12 by 144◦), which all
comprise subgroup I ⊂ Ih , and, then, inversion (1), mirror planes crossing the centers
of opposite edges (15), mirror rotations of order 6 relevant to the threefold axes (20),
mirror rotations of order 10 relevant to both subtypes of fivefold axes (12 + 12), or
120 elements in toto. With the numbering of vertices from [53], representatives of the
respective conjugated classes of permutations are:
g1 = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12); g2 = (1, 2)(3, 6)(4, 11)(5, 7)(8, 10)

(9, 12); g3 = (1, 4, 3)(2, 5, 8)(6, 9, 7)(10, 12, 11); g4 = (1)(12)(2, 6, 5, 4, 3)

(7, 11, 10, 9, 8); g5 = (1)(12)(2, 5, 3, 6, 4)(7, 10, 8, 11, 9); g6 = (1, 12)(2, 9)(3, 10)

(4, 11)(5, 7)(6, 8); g7 = (1, 9)(2, 12)(3, 8)(4)(5)(6, 10)(7)(11); g8 = (1, 11, 3, 12,

4, 10) (2, 7, 8, 9, 5, 6); g9 = (1, 12)(2, 8, 5, 11, 3, 9, 6, 7, 4, 10); g10 = (1, 12)

(2, 11, 6, 10, 5, 9, 4, 8, 3, 7), where underlining indicates that, within a cycle, there
are pairs of adjacent vertices (note that such adjacent vertices are also among vertices
fixed by the identity but did not delineate this). Following the order of elements above,
the cycle index C(Ih; X) is

C(Ih; X) = 1

120

(
s12

1 + 15s6
2 + 20s4

3 + 12s2
1 s2

5 + 12s2
1 s2

5 + s6
2

+15s4
1 s4

2 + 20s2
6 + 12s2s10 + 12s2s10

)
. (15)
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Also note that 1/60 times the sum of the first 5 members in parentheses is equal to
the cycle index C(I ; x) of the subgroup I ⊂ Ih acting on the same set X . Since we
consider a problem involving only two colors (one for hydrogen atoms and one for
t-butyls), we may anticipate the generating function(s) in only one variable x for indi-
cating by a respective superscript just the number of t-butyl substituents. Practically,
substituting (1 + x j )(1 ≤ j ≤ 10) for s j in (15) gives the ordinary isomer-counting
series

C(Ih; X; x) = 1

120

[
(1 + x)12+15(1 + x2)6+20(1 + x3)4+12(1 + x)2(1 + x5)2

+12(1 + x)2(1 + x5)2 + (1 + x2)6 + 15(1 + x)4(1 + x2)4

+20(1 + x6)2 + 12(1 + x2)(1 + x10) + 12(1 + x2)(1 + x10)
]

= 1 + x + 3x2 + 5x3 + 10x4 + 12x5 + 18x6 + 12x7 + 10x8

+5x9 + 3x10 + x11 + x12. (16)

Here, none of the powers of x beyond 3 can correspond to possible sizes of independent
sets of vertices in G, if it is needed that α(G) = 3. Moreover, even the coefficients of
lower powers are exaggerated, in counting independent sets.

Now (14) takes into account all independent sets of G (whether equivalent or not);
whereas (16) considers all inequivalent subsets, which however are not necessarily
independent. One formulation to get at the desired coefficients is: Substitute for all
generating functions summed in square brackets in (16) proper expressions which
exactly exclude any adjacency of vertices which are inside one and the same orbit
(cycle) or are in different orbits, generated on X , by respective representative (cyclic)
subgroups < g j >⊂ Ih(1 ≤ j ≤ 10). In particular, we have to substitute the R. H. S.
of (14) in (16), which is the independence polynomial of G, for (1+x)12, and substitute
1 for (1+ x6)2 in (16), because the cyclic group 〈g8〉 reproduces the cycle distribution
of its generator g8 = (1, 11, 3, 12, 4, 10)(2, 7, 8, 9, 5, 6) into two orbits containing
pairs of adjacent vertices (say, vertices 1 & 3 in one orbit and 2 & 6 in the other), and
rejecting both of these orbits (comprising all sites of a skeleton) results in the case of
unsubstituted dianion B12H2−

12 . Here, we propose to the reader an exercise: derive all
substitutive polynomials using the list of cycle distributions induced by all 10 gen-
erators g j , which preceded (15). The solution is: a hybrid independence-cycle-index
polynomial:

I C(Ih; X; x) = 1

120

[
(1 + 12x + 36x2 + 20x3) + 15(1 + 4x2) + 20(1 + 2x3)

+12(1 + 2x + x2) + 12(1 + 2x + x2) + (1 + 6x2)

+15(1 + 4x + 6x2 + 4x3) + 20(1) + 12(1 + x2) + 12(1 + x2)
]

= 1 + x + 2x2 + x3. (17)

In the last part of (17), 1 corresponds to an unsubstituted dianion B12H2−
12 with the

full Ih symmetry, x to a C5d -group monosubstituted isomer, one x2 is assigned to a
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(meta) disubstituted isomer with symmetry group C2v , the other x2 to a (para) isomer
with the group D5d , and the only trisubstituted isomer, indicated by x3, possesses the
symmetry group D3d . The other 17 subgroups of Ih (see [54]) are not represented
by t-butyl derivatives of B12H2−

12 , which is a consequence of restrictive positions of
ligands in a skeleton, considered in our problem.

4 Conclusion

Herein, we have demonstrated the principal possibility to perform this and similar
tasks, though weak on a practicable calculational algorithm. Therefore, we consider
in a parallel paper the overall analytical approach to solving such problems and its real-
ization using symbolic algebraic calculations with program packages such as Maple.

Owing to certain common properties of all graph polynomials mentioned above,
one may make the next step for a general treatment of them. In particular, in our next
paper, we specially regard possible symmetry restrictions that may be imposed on the
covers C, in different tasks.
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